
Wirelessly Interfacing with the Yamaha
Disklavier Mark IV

Matthew Teeter and Christopher Dobrian
University of California, Irvine, United States, dobrian@uci.edu

Abstract — The music technology industry is only recently
beginning to realize the potential of wireless communication
technology for control and communication of data for music
and multimedia applications. A new breed of musical
devices is starting to integrate technology that allows the
wireless transmission of MIDI (Musical Instrument Digital
Interface) messages, real-time audio and video data, control
data for performance synchronization, and commands for
remote hardware control of these instruments. The Yamaha
Disklavier Mark IV piano, which debuted in 2004, is the
first instrument with wireless capabilities built-in [1]. It
communicates via the 802.11b protocol (WiFi), which allows
the piano to transmit and receive information to/from
nearby wireless controllers. The piano originally comes with
two such controllers: the handheld Pocket Remote
Controller (PRC), as well as the larger Tablet Remote
Controller (TRC). Both of these devices are proprietary,
closed systems that accomplish the specific function of
controlling the piano. In this project, we wished to create
platform-independent software having the same
functionality as these existing controllers, which could run
on a conventional laptop with wireless capabilities.
Although this solution has several advantages over the
prepackaged solutions, it is unsupported by Yamaha
because it was developed entirely at the University of
California, Irvine. We were able to interface with the
Disklavier by sniffing wireless network traffic with Ethereal
[2]. We then deciphered this raw information to determine
the messaging protocol the Disklavier used to communicate
with the supplied controllers. Once we understood the inner
workings of the piano, we created software using a variety
of technologies, including Java, PostgreSQL, XML, and
Flash. Our software can control a Mark IV piano from a
Windows, Mac, or Linux laptop, thereby opening new
possibilities in music creation and performance. Although
we assume the primary users of our software will be
universities, we hope it benefits the music technology
industry as a whole.

BACKGROUND
Controlling instruments wirelessly opens many new

possibilities regarding aesthetics, concert atmosphere, and
audience interactivity. In typical computer music concerts,
the instrument gets its instructions from one computer that
is connected with cables to the MIDI In/Out ports. In a
wireless situation, however, any number of computers
could communicate with the instrument without the need
for re-cabling, allowing for far greater levels of
convenience and interactivity.

Wireless control of instruments has other benefits as
well. A common occurrence at computer music concerts
is that listeners are often distracted by the myriad cables
surrounding the performers on stage. Instead of
concentrating on the music, they might be tempted to

think about the technology involved in controlling the
instruments, or watch the blinking lights on the mixer, etc.
Wireless communication in a musical setting helps to
remedy this problem. Eliminating cables and thereby
hiding some of the technological aspects serves to make
the computer-controlled piano seem less like a
newfangled contraption and more like a conventional
instrument people are familiar with. These are just two
ideas of ways in which wireless technology can improve
the concert atmosphere.

We hope others will continue to explore this area
further using our software. To conform to Yamaha’s
controller naming scheme, we decided to dub our software
the Disklavier Laptop Remote Controller (DLRC). We
shall hereafter refer to it using this name in order to avoid
confusion with the original controllers. Despite the name,
a laptop is not required - the software could run on any
device that supports Java, ability to access a PostgreSQL
database such as JDBC (Java Database Connectivity), and
Flash (which is actually only required for the user
interface). Note that because controlling the Disklavier
from a PC deviates from Yamaha’s Terms of Use,
Yamaha is not liable for any problems encountered while
using our software.

PREVIOUS WORK
Ever since the Mark IV Disklavier debuted in 2004 [3],

there was no way of controlling the piano from a third-
party device before we created DLRC. We found one
report of someone using a PDA-like device to control
MIDI equipment wirelessly [4]. In Phil Dayson’s system,
a PDA with a wireless card was used to send commands
to a computer that was wirelessly connected on the same
network. The computer then sent MIDI information to a
keyboard. A system similar to this one is already in place
with the Disklavier Mark IV, except that the Disklavier’s
PDA device, the Pocket Remote Controller,
communicates directly with the piano itself. The
Disklavier system thus removes an intermediate step in
the line of communication, thereby reducing latency.
Nevertheless, having to use the supplied controllers was
constraining, and we wanted to eliminate this problem by
controlling the piano with a standard (non-proprietary),
readily-available laptop.

Other companies, such as M-Audio and CME, are
beginning to realize the potential that wireless capabilities
can have on the digital music world. Both companies offer
wireless MIDI adapters so that MIDI cables can be
eliminated. This is perfect for musicians who like to move
around on stage while playing. Although the Disklavier
does not yet come with a wireless MIDI system, we

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

212

anticipate such systems will become commonplace in the
future.

MOTIVATION
The DLRC provides many benefits over the existing

controllers. First of all, it mitigates the risk of losing or
damaging an existing controller. Because both the PRC
and the TRC are quite costly to replace, non-proprietary,
free software is certainly valuable. Besides the risk-
mitigation benefit, having an easy-to-replicate controller is
quite useful in other ways. For example, consider a
university setting where many students and teachers use
the Disklavier at different times. To keep track of the
controllers, users must check out the controller equipment
before each use, and return it when finished. This is
obviously somewhat inconvenient; the problem can be
eliminated if users could control the piano from their own
laptop, thus avoiding the check-out process altogether.

The DLRC also contains software improvements over
the existing controllers. For example, our software allows
users to more easily navigate to and select songs from
their USB drive. The original PRC software displays all
folders on the USB drive, regardless of whether they have
playable MIDI files within them or not. In the v1.2
firmware, all subdirectories on the drive are displayed as
their own album. If the user selects an album that
contains no songs, a “No songs” message is displayed and
the user must navigate back to the album menu to try
again. Our software avoids this inconvenience by only
displaying albums that have playable files within them.
We were able to do this by simply modifying a SQL query

used to access the songs on the USB drive. Considering
that the average person has many types of files stored on
their USB drive besides only MIDI files, this feature
vastly improves the USB navigation interface.

We also added capabilities which the original software
could not perform, such as slowing tempo down to less
than 50%. This could be useful when attempting to learn
a song with a fast tempo. Furthermore, users can more
rapidly select songs with our interface, because more are
displayed on the selection screen at once (see Fig. 2).
These functionalities, along with others, such as the ability
to automatically bring the Disklavier out of standby when
the DLRC is started, greatly simplify the user experience.

Finally, because the DLRC was written in a manner
that maintains compatibility with the existing controllers,
any number of laptops, PRCs, and TRCs can be connected
simultaneously to the same piano. This enables new
possibilities in music performance and audience
interaction. For example, consider an interactive concert
involving a Yamaha Disklavier piano connected
wirelessly with laptops in a concert setting. An audience
could bring in multiple laptops and simultaneously send
input to the piano, influencing the music in some way
while sitting in their seats and quietly listening!

A thorough description of our software, along with a
description of the piano’s software configuration, follows.

SYSTEM OVERVIEW
The Disklavier consists of a standard acoustic piano

outfitted with mechanisms to act as a player piano, with
built-in speakers, and a passively-cooled Linux computer

Figure 1: Our software working in a standard web browser.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

213

equipped with a wireless router. A Disklavier thus allows
nearby wireless devices to connect to its built-in computer
and communicate with the piano by using IP addresses
assigned using DHCP. The pianos come with a factory-
default IP address of 192.168.88.1. Controllers connected
to the piano are assigned IP addresses on the same subnet
as the piano (e.g. 192.168.88.7). Each controller must
open one TCP connection on port 3191 to exchange
information with the Disklavier server software and
another connection on port 5432 (the default PostgreSQL
port) to query the PostgreSQL database which also resides
on the Linux computer. Client software must query both
the piano server software and the database in tandem to
perform operations, control the piano, and receive updates
from the piano. This information is summarized in Fig. 3.
We shall hereafter refer to the piano’s server software as
the “server,” and any connected device (PRC, DLRC, etc)
as a “client.”

The database stores a plethora of information including
attributes of songs stored in the hard drive, USB drive (if
inserted), CD-ROM (if inserted), floppy disk (if inserted),
playlists, locations of backgrounds, saved preferences, and
more. Please see the Database Details section for more
information.

FIRMWARE CHANGES
We originally started this project in the summer of 2006

using a Disklavier running the v1.0 firmware. When the
v1.2 firmware was released in September 2006, some
parts of the messaging protocol changed, breaking
compatibility with our software. Nevertheless, because
these changes were an improvement over the previous

firmware, we welcomed them, even though they increased
the complexity of the protocol.

First of all, we noticed that the new firmware for the
PRC uses the OFFSET and LIMIT keywords in their SQL
queries to only request information that can fit on the
screen at any one time. This reduces delay in the user
interface, which could result from requesting a large
number of entities (instruments, songs, etc) at once.
Additionally, the v1.2 firmware regards case more strictly.
For example, we had previously been accessing a database
table using “USB_song”, but with v1.2, only “usb_song”
was recognized.

Another welcome change in v1.2 is one which
optimizes network bandwidth by reducing unnecessary
traffic. Previously, the piano server would send its many
state variables to the controllers upon connecting. The
server would also send the updated parameter (for
example, quiet mode on) to all connected clients when a
parameter was changed, even to the requesting client.
With v1.2, however, the server sends nothing unless
specifically requested to do so, allowing a device to only
query the information it is interested in during connection
set-up. Furthermore, instead of sending an updated
parameter (such as volume, quiet status, etc) back to the
client who requested the change, the server only updates
the other clients. Thus, the requesting client is responsible
for remembering the state it just requested. While this
scheme reduces network traffic, it is less reliable because
there is no confirmation of the state change to the
requesting client. The request could get lost in transit and
the client would think the server is in the recently
requested state, when in reality, it is not. Besides this
disadvantage, unpredictable results occur if two clients

Figure 2: The DLRC song selector displays 28 songs per screen, as opposed to the TRC’s ten or the PRC’s six.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

214

request the same parameter to change to two different
values simultaneously, since each client will think the
piano is in a different state. Yet because the piano
operates on a fairly-reliable WLAN, these problematic
situations should not arise very frequently.

Without a doubt, Yamaha will continue to improve the
Disklavier server and client software, continuing to add
new functionality and features. We plan to let the open
source community continue to adapt the DLRC software
to future firmware changes, as well as adding new
functionality. We will gladly provide assistance to parties
interested in improving our software. Our software and
source-code is available at the authors' webpage:
http://music.arts.uci.edu/dobrian/disklavier

METHODOLOGY
Our first goal in this project was to determine the way

the Disklavier server software communicated with the
PRC and TRC. We used the Ethereal program to obtain
the raw packets which were being sent wirelessly from the
controllers to the piano server. The server process on the
piano’s Linux computer communicates via XML
messages. In order to determine which XML messages
caused particular functionality, we would perform some
action on the PRC, take a short packet capture, and then
peruse the packet stream until we found the messages that
resulted in the functionality we were looking for.

We first started with perhaps the simplest
functionality: that of switching between quiet and
acoustic mode. All that is necessary to invoke this change
is to send the following piece of XML: <quiet_status
mode="acoustic"/> or <quiet_status
mode="quiet"/>. Conveniently, Flash has a built-in
class called XMLSocket which allows XML to be sent
and received using Actionscript. This fact influenced our
decision to write the software in Flash. Additionally, we
choose Flash because we surmised that the original
software was written in Flash, seeing that it made use of
transparency and animation. Our hope is that the DLRC
interface can be made more similar to the interfaces of
the existing solutions, in order to make the new software
even easier to use.

The server software alerts clients to its current state by
broadcasting XML messages periodically. The most
common message contains pertinent playback
information and is sent every second using the sequencer
status message: <seq_status status="stop"
source_id="user" album_id="1"
sel_song_no="4" song_id="4" time="0"
sync="off" mode="master"></seq_status>

This tells the client where the currently-selected song
is located (user library, usb, cd, floppy, etc.), the album
and song number (the database stores the song names and
other information), milliseconds into the song, and other
information. For more details on the various commands

TABLE I.
COMMANDS CLIENTS CAN SEND TO REQUEST SERVER STATE

INFORMATION

Request Description
<sync /> Used to synchronize the audio stream with MIDI

data
<track_param /> Gets track parameters from server (tracks 1-16,

new in V1.2)
<metronome /> Get metronome information, such as meter and

tempo, from server (new in v1.2)
<autoplay /> Determine whether autoplay is on or off
<ab_repeat /> Get the current song repeat settings (new in v1.2)

<playfunc_status /> Get information related to song playback,
including milliseconds into current song

<quiet_status /> Determine if the piano is in acoustic mode or quiet
mode

<smartkey_prompt /> Sent just before a song starts playing and piano is
in player mode

<panel_voice /> Gets information about the synthesized voice
selected (quiet mode only)

<master_tune /> Gets piano tuning information (electronic tuning
only)

<performance /> Get performance information (selected instrument,
LH on/off, RH on/off etc)

<cdsync /> Used to synchronize playback with a CD.
<vocal_harmony /> See if vocal harmony is enabled or disabled

<play_back /> Get information related to playback such as time in
song, volume, etc

Figure 3: Architecture of the Disklavier Mark IV system, along with our own software architecture.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

215

sent between clients and the server, please see the
Command Structure section.

One challenge we faced when developing our software
was accessing the database synchronously. As far as we
could tell, the original software used synchronous
database queries; that is, the client software halted
computation until database queries returned. This
approach makes the program’s code structured and
organized. The XMLSocket class, however, only supports
asynchronous communication. Since we were using this
class to communicate with the database, we had to write
our event handlers somewhat awkwardly. This
complication was compounded by the fact that Flash
cannot send SQL queries directly. There are three
solutions to this problem [5], and we choose the least-
intrusive option in order to avoid changing the piano’s
server software. Thus, we created a backend Java
program which speaks XML to the Flash frontend, and

uses JDBC to connect to the database. There do seem to
be ways to communicate with a database synchronously
using Flash, but such methods required expensive third
party software. Since we wanted to release our program
into the open-source domain, we decided to go with the
free alternative. Perhaps this part of the software can be
improved in the future.

DATABASE DESCRIPTION
The piano’s computer runs a PostgreSQL database

server (version 7.3.9). Multiple databases can exist on
one PostgreSQL database server. In the case of the piano
server software, there is the main database called
“mk4db,” (see Fig. 6) as well as an unused database called
“garbage.” This database appears to be an initial prototype
that was abandoned. One table in this database is called
“gaku”; this is the only hint of Japanese influence in the
software. The large amount of English used in the rest of

Figure 4: A summarized database schema. Other song and album tables of the form x_song and x_album are omitted because they have the
same format as usb_song and usb_album.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

216

the messages leads us to believe it was programmed by
native English speakers.

The database stores a plethora of information (see Fig.
4). Most tables store song and album information. Each
storage medium has two tables in the database: one
containing the albums on the medium, called x_album,
and the other containing all the songs with their attributes,
called x_song (where x could be usb, cd, or fd). In
addition, each built-in song repository, such as the
Pianosoft library, Pianosoft Plus Audio library, user-
recorded songs, playlists, MIDI radio songs, diagnostic
songs, and demo songs have tables in the same format—
for example, pianosoft_album and pianosoft_song or
demo_album and demo_song. The server software
populates the appropriate tables when a particular media is
inserted into the piano. As an interesting aside, even
though the piano has 2 USB ports, users can only access
songs on the first USB drive inserted if two drives are
plugged in at once. This may be fixed, of course, in a
future firmware release (2.0).

Additional information besides song and album data
resides in the database. Many tables are dedicated to
storing parameters and settings. The table voice_list stores
all the electronic voices that the instrument can play when
in quiet mode. Other tables control art preferences for the
TRC and PRC. Of particular interest is the dlog table,
which stores logs and error messages that are not
accessible to users via the PRC or TRC. The software
makes an entry each time it is turned on, updated, tested,
or notices something is wrong (such as a low power
supply voltage). While the DLRC cannot display this
information yet, it would certainly be a useful and
informative feature to help end-users diagnose problems
with their piano.

The database does not designate any columns as
primary keys; rather, PostgreSQL’s OIDs feature is used
to assign a unique, six-digit integer to each entry in the
entire database. This Object-ID takes the place of a
primary key. Overall, the database is much more complex
than one would initially expect.

SERVER SOFTWARE RESILIENCE

We were impressed with the server software’s elegant
handling of erroneous input. If a client sends a command
to the piano that it does not recognize, it will return a
XML NAK message: <status
name="some_command"><reply>NAK</reply><reas
on>unknown command.</reason> </status>. If, on
the other hand, a valid XML message is sent, but with
erroneous parameters, different behavior can occur. For
instance, the PRC allows users to vary the tempo from
50% to 120% of the original tempo. When we sent our
own messages, we were able to vary the speed from 0%
(stopped) to 120%. If values outside of this range were
input, the software would limit [i.e., clip] the input to the
nearest valid number. We also tried pitch transposition.
The original software allows transposition between -24
and 24 semitones. We found that the server software
checks incoming values and disallows values outside of
this range. The addition of server-side input checking
reflects good software design.

COMMAND STRUCTURE

We present a small subset of the messaging protocol
used between the Disklavier and its wireless clients.
These messages are some of the most common and
widely-used commands which should be of interest to
prospective Disklavier developers. Note that this
protocol, the database schema, and other parts of
Yamaha’s software are subject to change without notice.

<active /> Clients send this every three seconds so
the server knows whether or not clients are still in range.
The server also sends this message back to clients. If the
server does not receive any XML messages from a client
for 15 seconds, the server closes that connection, so
sending this message avoids potential disconnects.

<rcs_status status="on"/> A client can send this
message to tell the remote control server to come in or out
of standby. When in standby, clients communicate with
the server less frequently and the piano’s computer is in a
low-power state.

<seq_status status="stop"
source_id="user" album_id="1"
sel_song_no="3" song_id="3" time="0"
sync="off" mode="master"
mtc_mode="off"></seq_status> This message is
sent by the server every second to update clients with
information about the current playing song. Status can be
stop, loading, loaded, play, or pause. Source_id is the
location of the song – in this example, the user library.
Sel_song_no references the song’s display_order number,
which is different from it’s song_id number. Time is the
number of milliseconds the piano has played through the
song.

<vol_status main_acoustic="100"
main_quiet="7" main_headphone="50"
voice="13" tg="33" audio="18" mic="10" />
This command informs clients of current volume levels
and can also be sent by clients to invoke changes in
volume.

<playfunc_status trans="0" repeat="off"
tempo="100" right_hand="on" left_hand="on"
pedal="on" accompaniment="on" /> This message
contains transposition amount, repeat settings, and tempo.
It also lets the client know which parts of the piano will be
robotically controlled. Like other commands, this message
can be used as a status update or a way of invoking
changes in these parameters by clients. Note that these
parameters cannot be changed individually. Instead, the
entire message (containing all attributes) must be sent in
order for the server to recognize the message.

<panel_voice_harmony harmony = "1"/> Used
to enable or disable electronic voice harmony.

<master_tune mode ="0" master_tune="0"/>
States/changes the current tuning adjustments of the
electronic piano used in quiet mode.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

217

<message_box /> Sent by the server with additional
information to cause a client to pop up a message box to
inform the user of some event. For example, it is used
when deleting a song.

<performance mode="0" split="28"
p_part="1" r1_part="1" r1_voice="34"
r1_vol="100" r2_part="0" r2_voice="18"
r2_vol="100" l_part="0" l_voice="23"
l_vol="100" /> This is sent when the user manipulates
the piano’s performance parameters. Different electronic
voices can be used for the upper and lower parts of the
piano, each with different volumes.

<cdsync status="off"/> Enables or disables
syncing with audio CDs.

<vocal_harmony vh="off" vh_type="3"/>
Enables or disables vocal harmony when a microphone is
attached.

<play_back skip_space="1" quiet_key="1"/>
Determines whether or not the keys are mechanically
depressed and blank space at the beginning or end of
songs is skipped.

<smartkey_prompt key="" visible="off"/>
Can make the piano slightly depress keys for use in
particular playback modes.

<load_song source_id="pianosoft"
album_id="6" sel_song_no="46"/> This is sent by
a client to make the piano load a particular song. The
client must provide the database table where the song
resides (source_id), the album, and song number.

There are many other commands sent from the piano
that are not included here. Since we were interested in
replicating the core functionality of the piano, we did not
take the time to study how each command works.
Nevertheless, we are impressed with the complexity of the
Disklavier software and applaud the developers for using
standard, easy-to-parse XML.

SECURITY

Throughout our survey of the Disklavier’s inner
workings, certain parts of the software concerned us with
regards to security. Of highest concern is that the database
has no password. Anyone within wireless range of the
piano can log in to the database with a fairly
unimaginative user name and a blank password. Once
someone has access to the database, they could wreak
havoc, possibly causing the client software to crash or
behave in an unpredictable fashion. The location of art
assets could be deleted, songs could be removed from
playlists, etc. This also means that an attacker could
change the protect flag on a file to remove that song’s
copy protection mechanism. We have not tried any
destructive actions for fear of damaging our Disklavier
since we wouldn’t want to send it back for a firmware
reinstall. We present the above information in hopes that

Yamaha will be aware of these possible problems. In no
way do we advocate using this information for nefarious
purposes. Most likely, these decisions were made because
the designers assumed that users of the piano would never
discover how to access the database. With a growing
population of technically-skilled musicians, however, we
argue that the lack of database security is cause for
concern. Adding a password to the account, even one that
could be sniffed wirelessly, would deter all but the most
intrepid hackers.

CONCLUSION

Throughout the process of interfacing with the
Disklavier Mark IV piano, we learned much about the
complexity of the piano’s software. We were able to
understand the messaging protocol used between the
piano software and its original wireless controllers. Using
this information, we developed the first third-party
software controller for the piano, adding new functionality
while allowing a convenient new usage paradigm to be
implemented. We hope that others will use the
information contained within this paper to come up with
creative new ways of controlling the Disklavier, perhaps
from other devices (Java-enabled cell phone?). In
addition, we hope that manufacturers and entrepreneurs
will use a similar protocol to control other robotic
instruments which are currently under development, in
order to promote an open standard for musical instrument
control.

REFERENCES

[1] “Yamaha Player Piano Goes Wireless: The Disklavier Mark IV”
http://www.prnewswire.com/mnr/yamaha/20680/.

[2] Ethereal: A Network Protocol Analyzer. www.ethereal.com

[3] Yamaha Corporation. “Disklavier Technology Press Release -
November 18, 2004”,
http://www.prnewswire.com/mnr/yamaha/20680/docs/Mark_IV_Technol
ogy_Release-FINAL.doc.

[4] Dayson, Phil. “Wireless Control of a MIDI Player PC.”
http://mmd.foxtail.com/Archives/Digests/200502/2005.02.13.03.html.

[5] Petrescu, Razvan. “Connect Flash to a Database Using Sockets”,
http://www.devx.com/webdev/Article/30638

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

218

